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The Hosoya polynomial of a molecular graph G is defined as ,x  x)H(G,

)(},{
v)d(u,∑ ⊆

=
GVvu

where the sum is over all unordered 

pairs {u,v} of distinct vertices in G. Xu and Zhang in some research papers computed this polynomial for polyhex and 
TUC4C8(S) nanotubes. In this paper, we continue this program and present an algorithm for computing the Hosoya 
polynomial of TUC4C8(R) nanotubes.  
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1. Introduction 
 
A topological index is a real number that is derived 

from molecular graphs of chemical compounds. Such 
numbers based on the distances in a graph are widely used 
for establishing relationships between the structure of 
molecules and their physico-chemical properties. It is easy 
to see that the number of atoms and the number of bonds 
in a molecular graph are topological index. The first non 
trivial topological index was introduced early by Wiener 
[1]. He defined his index as the sum of distances between 
any two carbon atoms in the molecules, in terms of 
carbon-carbon bonds. We encourage the reader to consult 
papers [2,3]and references therein, for further study on the 
topic. 

Let G be a simple molecular graph without directed 
and multiple edges and without loops, the vertex and edge 
sets of which are represented by V(G) and E(G), 
respectively. If e is an edge of G, connecting the vertices u 
and v then we write   e = uv. The distance between a pair 
of vertices u and w of G is denoted by d(u,w). Thus, we 
can redefine the Wiener index of a graph G as               
W(G) = ∑{x,y}⊆V(G)d(x,y). 

The Hosoya polynomial of a molecular graph G is 
defined as ,x  x)H(G, )G(V}v,u{

v)d(u,∑ ⊆= where the sum is over 

all unordered pairs {u,v} of distinct vertices in G [4,5]. 
Suppose D = [dij] denotes the distance matrix of G, where 
dij is the length of a minimal path connecting the ith and 
jth vertices of G. Then one can see that W(G) = 1/2∑i,jdij 

and H(G,x) = 1/2∑i,j
ijdx . 

In recent years, some authors computed the Hosoya 
polynomial of some chemical graphs applicable in nano-

science [6-10]. One of us (ARA) also computed the 
Wiener index of a polyhex and TUC4C8(R/S) nanotori [11-
15]. In this paper we continue this program to present a 
new algorithm for computing the Hosoya polynomial of 
TUC4C8(R) nanotube. Our notation is standard and mainly 
taken from the book of Trinajestic [16]. 

 
 
2. Algorithm 
 
In this section an exact formula for the Hosoya 

polynomial of TUC4C8(R) nanotube is derived, Fig. 1. 
Since 

x 1d / dx(H(G, x)) | W(G),= =  the Wiener index of this 
nanotube is also computed.  

 
 

 
 
 
Fig. 1. 3D-Representation of a TUC4C8(R) Nanotube. 

 
 
Suppose T1 is 2–dimensional lattice of 

TUC4C8(R)[m,n], where m is the number of rows and n is 
the number of columns, Fig. 2. Choose four base vertices 
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a(1,1), b(1,1), c(1,1) and d(1,1) from the molecular graph 
of T1, Figs. 3 and 4.  

 

 
 

Fig. 2. The 2–dimensional fragments of a TUC4C8(R) 
nanotube. 

 

 
 

Fig. 3. A labeling of TUC4C8(R). 
 
 

 
 

Fig. 4. The base vertices of TUC4C8(R). 
 

For computing D(T1), we first define the following 16 
matrices: 

 
a(i, j) b(i, j) c(i, j) d(i, j)
a (1,1) a (1,1) a (1,1) a (1,1)

a (i, j) b(i, j) c(i, j) d(i, j)
b(1,1) b(1,1) b(1,1) b(1,1)

a (i, j) b(i, j) c(i, j) d(i, j)
c(1,1) c(1,1) c(1,1) c(1,1)

a (i, j) b(i, j)
d(1,1) d(1,1) d(1,1)

D ,D , D ,D

D ,D , D , D

D , D ,D , D

D , D , Dc(i, j) d(i, j)
d(1,1),D

. 

 
To define these matrices, we first partition the vertex 

set of T1, into four sets A, B, C and D. A is the set of all 
vertices with the same position in the rhombs. For example 
from Fig. 4, one can see that a, x ∈ A. The sets B, C and D 
are defined similarly. Define )j,i(a

)1,1(aD  as the distance 
matrix for the base vertex a(1,1) from other vertices of the 
set A. The entries of this matrix are distances between 
a(1,1) and a(i,j) ∈ A of the graph T1. We notice that by 
symmetry of T1, it is enough to compute eight of these 
matrices. Remark that four matrices )j,i(a

)1,1(aD , )j,i(b
)1,1(bD , 

)j,i(c
)1,1(cD  and )j,i(d

)1,1(dD  are equal. Consider the permutation    
µ = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
23...1nn1
n1n...321 . It is easy to see that the 

matrices b(i, j)
a (1,1)D  and b(i, j)

c(1,1)D  are obtained from d(i, j)
a (1,1)D  and 

d(i, j)
c(1,1)D . By symmetry of Fig. 3, it is possible to compute 

the distance matrix evaluated at the base vertex d from the 
same matrix for the vertex b. On the other hand, the 
matrices d(i, j)

b(1,1)D , c(i, j)
d(1,1)D  and a(i, j)

d(1,1)D  is computed from 
b(i, j)
d(1,1)D , c(i, j)

b(1,1)D  and a(i, j)
b(1,1)D  by trace of µ.  

In Table 1, some blocks of eight matrices are defined. 
To complete our definition, we assume that on for other 
entries of this matrix, we have. 

• For other entries of the matrix c(i, j)
a(1,1)D , β ij = β i(n-

j+2), 
• For other entries of the matrix a(i, j)

b(1,1)D , π ij = π i(n-

j+1) +1, 
• For other entries of the matrix c(i, j)

b(1,1)D , ρ ij = ρ i(n-

j+2) +1, 
• For other entries of the matrix a(i, j)

b(1,1)D , η ij = η i(n-

j+1) +1, 
• For other entries of the matrix d(i, j)

c(1,1)D , γ ij = γ i(n-

j+2) +1, 
• For other entries of the matrix a(i, j)

a(1,1)D , α ij = α i(n-

j+2), 
• For other entries of the matrix  a(i, j)

c(1,1)D , δ11=2 and 

δ1j=δ2j−1 for 1<j≤ n. One the other hand, δij = δi(n-

j+1), where n/2+1< j ≤ n for (n|2) or (n+1)/2< j ≤ n 
(n∤2).  
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Table 1. Some distance matrices. 

 
 

The Distance Matrix a(i, j)
a(1,1)D  between the Base Vertex a(1,1) and Vertices of the Set A. 

j = 1 2 ≤ j ≤ n/2+1  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

α11 = 0 α 1j = α 1(j-1) + 3 

 
and for i>1 

 i ≤ j     α ij = α (i-1)j + 1 
i > j      α ij = α (i-1)j + 3  

The Distance Matrix c(i, j)
a(1,1)D  between the Base Vertex a(1,1) and Vertices of the Set C. 

j = 1 j = 2 3 ≤ j ≤ n/2+1  (n | 2) 
3 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

β11 = 2 β 12 = 3 β 1j = β 1(j-1) + 3 

 
and for i>1 

 i < j         β ij = β (i-1)j + 1 
i ≥ j         β ij = β (i-1)j + 3  

The Distance Matrix d(i, j)
a(1,1)D  between the Base Vertex a(1,1) and Vertices of the Set D. 

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

η11 = 1 η 1j = η 1(j-1) + 3 

 
and for i>1 

 i ≤ j     η ij = η (i-1)j + 1 
i > j      η ij = η (i-1)j + 3  

The Distance Matrix a(i, j)
b(1,1)D  between the Base Vertex b(1,1) and Vertices of the Set A. 

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

π11 = 1 π 1j = π 1(j-1) + 3 

 
and for i>1 

 i+1 ≤ j     π ij = π (i-1)j + 1 
else     π ij = π (i-1)j + 3  

The Distance Matrix c(i, j)
b(1,1)D  between the Base Vertex b(1,1) and Vertices of the Set C. 

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

ρ11 = 1 ρ 1j = ρ 1(j-1) + 3 

 
and for i>1 

 i ≤ j         ρ ij = ρ (i-1)j + 1 
i > j         ρ ij = ρ (i-1)j + 3  

The Distance Matrix d(i, j)
b(1,1)D  between the Base Vertex b(1,1) and Vertices of the Set D. 

j = 1 j = n 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j < (n+1)/2 (n∃ 2) 

n/2 < j ≤ n-1    (n | 2) 
(n+1)/2 ≤ j ≤ n-1 (n∃2) For i = 1 

τ11 = 2 τ 1n = 1 τ 1j = τ 1(j-1) + 3 τ 1j = τ 1(j+1) + 3 
1 ≤ j ≤ n/2    (n | 2) 

1 ≤ j < (n+1)/2 (n∃2) 
n/2 < j ≤ n    (n | 2) 

(n+1)/2 ≤ j ≤ n  (n∃ 2) For i > 1 
i < j+1         τ ij = τ (i-1)j + 1 
i > j             τ ij = τ (i-1)j + 3 

i ≥ n-j        τ ij = τ (i-1)j + 1 
otherwise  τ ij = τ (i-1)j + 3  

The Distance Matrix a(i, j)
c(1,1)D  between the Base Vertex c(1,1) and Vertices of the Set A. 

j = 1 2 ≤ j ≤ n/2+1  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 2 

δ21 = 1 δ 2j = δ 2(j-1) + 3 

 
and for i>2 

 i < j+1    δ ij = δ (i-1)j + 1 
else         δ ij = δ (i-1)j + 3  

The Distance Matrix d(i, j)
c(1,1)D  between the Base Vertex c(1,1) and Vertices of the Set D. 

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∃ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∃ 2) For i = 1 

γ11 = 1 γ 1j = γ 1(j-1) + 3 

 
and for i>1 

 i < j+1       γ ij = γ (i-1)j + 1 
i ≥ j+1        γ ij = γ (i-1)j + 3  
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In what follows, the row representations of these 

matrices are considered. Define: 
 

a c d a
1 1 1 1

a(i, j) c(i, j) d(i, j) a (i, j)
a (1,1) a(1,1) a (1,1) b(1,1)

a c d a
m m m m

c d
1 1

c(i, j) d(i, j) a
b(1,1) b(1,1) c(1,1)

c d
m m

A A A B
D , D , D , D ,

A A A B

B B
D , D , D

B B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M M M

M M

a d
1 1

(i, j) d(i, j)
c(1,1)

a d
m m

C C
, D

C C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M

. 

 
To compute the distance matrix of the molecular 

graph of this nanotube, we define also distance matrices 
for to the ijth rhomb of T1, Fig. 4. For the rhombs of the 
first column, we define: 

 
a a d c
t t t t

a a d c
a(i, j) c(i, j) d(i, j) a (i, j)2 2 2 2
a(t,1) a( t ,1) a (t ,1) b(t ,1)a c d a

1 1 1 1

a c d a
m t 1 m t 1 m t 1 m t 1

A C C B

A C C B
D ,D ,D ,D

A A A B

A A A B− + − + − + − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

M M M M

M M M M

a d c d
t t t t

a d c d
c(i, j) d(i, j) a(i, j) d(i, j)2 2 2 2
b(t,1) b(t ,1) c( t ,1) c( t ,1)c d a d

1 1 1 1

c d a
m t 1 m t 1 m t 1 m t

,

B B A A

B B A A
D ,D , D ,D

B B C C

B B C C− + − + − + −

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M M M

M M M M
d

1+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We claim that the distance matrices of other entries 

are computable from the matrices of the first column. For 
example, we assume that ]AA[D ana1)j,i(a

)1,t(a L= , 

where i aA  is the ith column of a(i, j)
a (t ,1)D . Then 

a(i, j) n s 2 a n a 1 a n s 1 a
a(t,s)D [ A A A A ]− + − += K L . We now 

count the repeated entries of these matrices to find the 
following equation: 

 

( ) 1 j ij
n m nd da(i, j)

a (1,1) 1
j 1 i 2 j 1

1W T , x n m x 2(m i 1) x
2 = = =

∑ ∑ ∑
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

, 

where a(i, j)
a (1,1)D  = [dij]. Other polynomials are similar and so 

the Hosoya polynomial of this nanotube is computed as 
follows: 

( ) ( )
( ) ( )

( ) ( )
( )

a (i, j) d(i, j)
4 8 a (1,1) 4 8 a(1,1) 4 8

c(i, j) a(i, j)
a (1,1) 4 8 c(1,1) 4 8

d(i, j) a (i, j)
c(1,1) 4 8 b(1,1) 4 8

c(i, j)
b(1,1) 4 8 b(1

W(TUC C (R), x) 4W TUC C (R), x 2W TUC C (R), x

W TUC C (R), x W TUC C (R), x

2W TUC C (R), x 2W TUC C (R), x

2W TUC C (R), x 2W

= +

+ +

+ +

+ + ( )d(i, j)
,1) 4 8TUC C (R), x .

. 

 
 
 
 

 
 
 
 
3. Conclusions 
 
We have given an efficient algorithm for computing 

Hosoya polynomial of nanotubes. It is possible to compute 
the Hosoya polynomial of other nanotubes by using the 
similar methods. Our calculations in this paper can be 
performed by applying the Software package MATLAB 
and our programs are accessible from the authors upon 
request. 
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